A Decomposition Technique for Max-CSP

نویسندگان

  • Hachemi Bennaceur
  • Christophe Lecoutre
  • Olivier Roussel
چکیده

The objective of the Maximal Constraint Satisfaction Problem (Max-CSP) is to find an instantiation which minimizes the number of constraint violations in a constraint network. In this paper, inspired from the concept of inferred disjunctive constraints introduced by Freuder and Hubbe, we show that it is possible to exploit the arc-inconsistency counts, associated with each value of a network, in order to avoid exploring useless portions of the search space. The principle is to reason from the distance between the two best values in the domain of a variable, according to such counts. From this reasoning, we can build a decomposition technique which can be used throughout search in order to decompose the current problem into easier sub-problems. Interestingly, this approach does not depend on the structure of the constraint graph, as it is usually proposed. Alternatively, we can dynamically post hard constraints that can be used locally to prune the search space. The practical interest of our approach is illustrated, using this alternative, with an experimentation based on a classical branch and bound algorithm, namely PFC-MRDAC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing and exploiting tree-decompositions for (Max-)CSP

Methods exploiting the tree-decomposition notion seem to provide the best approach for solving constraint networks w.r.t. the theoretical time complexity. Nevertheless, they have not shown a real practical interest yet. So, in this paper, we first study several methods for computing an approximate optimal tree-decomposition before assessing their relevance for solving CSPs. Then, we propose and...

متن کامل

MAX-CSP, Graph Cuts and Statistical Physics

Baker’s technique, which was created over three decades ago, is a powerful tool for designing polynomial time approximation schemes (PTAS) for NP-hard optimization problems on planar graphs and their generalizations. In this paper, we propose a unified framework to formulate the optimization problems where the local constraints of these problems are encoded by functions attached on the vertices...

متن کامل

Une technique de décomposition pour Max-CSP

The objective of the Maximal Constraint Satisfaction Problem (Max-CSP) is to find an instantiation which minimizes the number of constraint violations in a constraint network. In this paper, inspired from the concept of inferred disjunctive constraints introduced by Freuder and Hubbe, we show that it is possible to exploit the arc-inconsistency counts, associated with each value of a network, i...

متن کامل

A Decomposition Technique for CSPs Using Maximal Independent Sets and Its Integration with Local Search

We introduce INDSET, a technique for decomposing a Constraint Satisfaction Problem (CSP) by identifying a maximal independent set in the constraint graph of the CSP. We argue that this technique reduces the complexity of solving the CSP exponentially by the size of the maximal independent set, and yields compact and robust solutions. We discuss how to integrate this decomposition technique with...

متن کامل

Beating a Random Assignment : Approximating Constraint Satisfaction Problems

An instance of a Boolean constraint satisfaction problem, CSP, consists of a set of constraints acting over a set of Boolean variables. The objective is to find an assignment to the variables that satisfies all the constraints. In the maximization version, Max CSP, each constraint has a weight and the objective is to find an assignment such that the weight of satisfied constraints is maximized....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008